

pydantic-sqs

Convert your pydantic models to and from AWS SQS messages. Send and receive AWS SQS messages directly to pydantic objects.

Dependencies

	Python +3.7 [https://www.python.org]

	pydantic [https://github.com/samuelcolvin/pydantic/]

	aiobotocore [https://github.com/aio-libs/aiobotocore]

	Quick Start
	Examples

	Installation

	Quick Usage

	Serialization
	Data in Redis

	Simple data types

	Complex data types

	Development
	Environment Setup

	How to Run Tests

	Test Requirements

	Code Linting

	Generated Module Documentation

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

Examples

Examples are in the examples/ [https://github.com/andrewthetechie/pydantic-sqs/tree/main/examples] directory of this repo.

Installation

Install the package

pip install pydantic-sqs

Quick Usage

Import the Store, the RedisConfig and the Model classes.

Store and RedisConfig let you configure and customize the connection to your redis instance. Model is the base class for your ORM models.

from pydantic_sqs import RedisConfig, Model, Store

Create models as you would create pydantic models i.e. using typings
class Book(Model):
 _primary_key_field: str = 'title'
 title: str
 author: str
 published_on: date
 in_stock: bool = True

Do note that there is no concept of relationships here
class Library(Model):
 # the _primary_key_field is mandatory
 _primary_key_field: str = 'name'
 name: str
 address: str

Create the store and register your models
store = Store(name='some_name', redis_config=RedisConfig(db=5, host='localhost', port=6379),life_span_in_seconds=3600)
store.register_model(Book)
store.register_model(Library)

Sample books. You can create as many as you wish anywhere in the code
books = [
 Book(title="Oliver Twist", author='Charles Dickens', published_on=date(year=1215, month=4, day=4),
 in_stock=False),
 Book(title="Great Expectations", author='Charles Dickens', published_on=date(year=1220, month=4, day=4)),
 Book(title="Jane Eyre", author='Charles Dickens', published_on=date(year=1225, month=6, day=4), in_stock=False),
 Book(title="Wuthering Heights", author='Jane Austen', published_on=date(year=1600, month=4, day=4)),
]
Some library objects
libraries = [
 Library(name="The Grand Library", address="Kinogozi, Hoima, Uganda"),
 Library(name="Christian Library", address="Buhimba, Hoima, Uganda")
]

async def work_with_orm():
 # Insert them into redis
 await Book.insert(books)
 await Library.insert(libraries)

 # Select all books to view them. A list of Model instances will be returned
 all_books = await Book.select()
 print(all_books) # Will print [Book(title="Oliver Twist", author="Charles Dickens", published_on=date(year=1215, month=4, day=4), in_stock=False), Book(...]

 # Or select some of the books
 some_books = await Book.select(ids=["Oliver Twist", "Jane Eyre"])
 print(some_books) # Will return only those two books

 # Or select some of the columns. THIS RETURNS DICTIONARIES not MODEL Instances
 # The Dictionaries have values in string form so you might need to do some extra work
 books_with_few_fields = await Book.select(columns=["author", "in_stock"])
 print(books_with_few_fields) # Will print [{"author": "'Charles Dickens", "in_stock": "True"},...]

 # Update any book or library
 await Book.update(_id="Oliver Twist", data={"author": "John Doe"})

 # Delete any number of items
 await Library.delete(ids=["The Grand Library"])

Serialization

Data in Redis

pydantic-sqs uses Redis Hashes to store data. The `_primary_key_field` of each Model is used as the key of the hash.

Because Redis only supports string values as the fields of a hash, data types have to be serialized.

Simple data types

Simple python datatypes that can be represented as a string and natively converted by pydantic are converted to strings and stored. Examples
are ints, floats, strs, bools, and Nonetypes.

Complex data types

Complex data types are dumped to json with json.dumps().

Custom serialization is possible using json_default [https://docs.python.org/3/library/json.html#:~:text=not%20None.-,If%20specified%2C%20default%20should%20be%20a%20function%20that%20gets%20called%20for%20objects%20that%20can%E2%80%99t%20otherwise%20be%20serialized.%20It%20should%20return%20a%20JSON%20encodable%20version%20of%20the%20object%20or%20raise%20a%20TypeError.%20If%20not%20specified%2C%20TypeError%20is%20raised.,-If%20sort_keys%20is] and json_object_hook [https://docs.python.org/3/library/json.html#:~:text=object_hook%20is%20an%20optional%20function%20that%20will%20be%20called%20with%20the%20result%20of%20any%20object%20literal%20decoded%20(a%20dict).%20The%20return%20value%20of%20object_hook%20will%20be%20used%20instead%20of%20the%20dict.%20This%20feature%20can%20be%20used%20to%20implement%20custom%20decoders%20(e.g.%20JSON%2DRPC%20class%20hinting).].

These methods are part of the abstract model [https://github.com/andrewthetechie/pydantic-sqs/blob/main/pydantic_sqs/abstract.py#L77] and can be overridden in your
model to dump custom objects to json and then back to objects. An example is available in examples [https://github.com/andrewthetechie/pydantic-sqs/tree/main/examples/serializer]

Development

The Makefile has useful targets to help setup your
development encironment. We suggest using pyenv to have access to
multiple python versions easily.

Environment Setup

	Clone the repo and enter its root folder

git clone https://github.com/andrewthetechie/pydantic-sqs.git && cd pydantic-sqs

	Create a python 3.9 virtual environment and activate it. We suggest
using pyenv [https://github.com/pyenv/pyenv] to easily setup
multiple python environments on multiple versions.

We use the extra python version (3.6, 3.7, 3.8) for tox testing
pyenv install 3.9.7 3.6.15 3.7.12 3.8.12
pyenv virtualenv 3.9.7 python-aioredis
pyenv local python-aioredis 3.6.15 3.7.12 3.8.12

	
Install the dependencies

make setup

How to Run Tests

	Run the test command to run tests on only python 3.9

pytest

	Run the tox command to run all python version tests

tox

Test Requirements

Prs should always have tests to cover the change being made. Code
coverage goals for this project are 100% coverage.

Code Linting

All code should pass Flake8 and be blackened. If you install and setup
pre-commit (done automatically by environment setup), pre-commit will
lint your code for you.

You can run the linting manually with make

make lint

CI

CI is run via Github Actions on all PRs and pushes to the main branch.

Releases are automatically released by Github Actions to Pypi.

Generated Module Documentation

This documentation is automatically generated from python docstrings.

Index

 nav.xhtml

 Table of Contents

 		
 pydantic-sqs

 		
 Quick Start

 		
 Examples

 		
 Installation

 		
 Quick Usage

 		
 Serialization

 		
 Data in Redis

 		
 Simple data types

 		
 Complex data types

 		
 Development

 		
 Environment Setup

 		
 How to Run Tests

 		
 Test Requirements

 		
 Code Linting

 		
 CI

 		
 Generated Module Documentation

_static/plus.png

_static/file.png

_static/minus.png

