
pydantic-sqs

Andrew Herrington

Dec 29, 2022

CONTENTS

1 Dependencies 3
1.1 Quick Start . 3
1.2 Development . 5
1.3 Generated Module Documentation . 6

2 Indices and tables 7

i

ii

pydantic-sqs

Convert your pydantic models to and from AWS SQS messages. Send and receive AWS SQS messages directly to
pydantic objects.

CONTENTS 1

pydantic-sqs

2 CONTENTS

CHAPTER

ONE

DEPENDENCIES

• Python +3.7

• pydantic

• aiobotocore

1.1 Quick Start

1.1.1 Examples

Examples are in the examples/ directory of this repo.

1.1.2 Installation

Install the package

pip install pydantic-sqs

1.1.3 Quick Usage

Import the Store, the RedisConfig and the Model classes.

Store and RedisConfig let you configure and customize the connection to your redis instance. Model is the base class
for your ORM models.

from pydantic_sqs import RedisConfig, Model, Store

Create models as you would create pydantic models i.e. using typings
class Book(Model):

_primary_key_field: str = 'title'
title: str
author: str
published_on: date
in_stock: bool = True

Do note that there is no concept of relationships here
class Library(Model):

the _primary_key_field is mandatory
(continues on next page)

3

https://www.python.org
https://github.com/samuelcolvin/pydantic/
https://github.com/aio-libs/aiobotocore
https://github.com/andrewthetechie/pydantic-sqs/tree/main/examples

pydantic-sqs

(continued from previous page)

_primary_key_field: str = 'name'
name: str
address: str

Create the store and register your models
store = Store(name='some_name', redis_config=RedisConfig(db=5, host='localhost',␣
→˓port=6379),life_span_in_seconds=3600)
store.register_model(Book)
store.register_model(Library)

Sample books. You can create as many as you wish anywhere in the code
books = [

Book(title="Oliver Twist", author='Charles Dickens', published_on=date(year=1215,␣
→˓month=4, day=4),

in_stock=False),
Book(title="Great Expectations", author='Charles Dickens', published_

→˓on=date(year=1220, month=4, day=4)),
Book(title="Jane Eyre", author='Charles Dickens', published_on=date(year=1225,␣

→˓month=6, day=4), in_stock=False),
Book(title="Wuthering Heights", author='Jane Austen', published_on=date(year=1600,␣

→˓month=4, day=4)),
]
Some library objects
libraries = [

Library(name="The Grand Library", address="Kinogozi, Hoima, Uganda"),
Library(name="Christian Library", address="Buhimba, Hoima, Uganda")

]

async def work_with_orm():
Insert them into redis
await Book.insert(books)
await Library.insert(libraries)

Select all books to view them. A list of Model instances will be returned
all_books = await Book.select()
print(all_books) # Will print [Book(title="Oliver Twist", author="Charles Dickens",␣

→˓published_on=date(year=1215, month=4, day=4), in_stock=False), Book(...]

Or select some of the books
some_books = await Book.select(ids=["Oliver Twist", "Jane Eyre"])
print(some_books) # Will return only those two books

Or select some of the columns. THIS RETURNS DICTIONARIES not MODEL Instances
The Dictionaries have values in string form so you might need to do some extra work
books_with_few_fields = await Book.select(columns=["author", "in_stock"])
print(books_with_few_fields) # Will print [{"author": "'Charles Dickens", "in_stock":

→˓"True"},...]

Update any book or library
await Book.update(_id="Oliver Twist", data={"author": "John Doe"})

Delete any number of items

(continues on next page)

4 Chapter 1. Dependencies

pydantic-sqs

(continued from previous page)

await Library.delete(ids=["The Grand Library"])

1.2 Development

The Makefile has useful targets to help setup your development encironment. We suggest using pyenv to have access
to multiple python versions easily.

1.2.1 Environment Setup

• Clone the repo and enter its root folder

git clone https://github.com/andrewthetechie/pydantic-sqs.git && cd pydantic-sqs

• Create a python 3.9 virtual environment and activate it. We suggest using pyenv to easily setup multiple python
environments on multiple versions.

We use the extra python version (3.6, 3.7, 3.8) for tox testing
pyenv install 3.9.7 3.6.15 3.7.12 3.8.12
pyenv virtualenv 3.9.7 python-aioredis
pyenv local python-aioredis 3.6.15 3.7.12 3.8.12

• Install the dependencies

make setup

1.2.2 How to Run Tests

• Run the test command to run tests on only python 3.9

pytest

• Run the tox command to run all python version tests

tox

1.2.3 Test Requirements

Prs should always have tests to cover the change being made. Code coverage goals for this project are 100% coverage.

1.2. Development 5

https://github.com/pyenv/pyenv

pydantic-sqs

1.2.4 Code Linting

All code should pass Flake8 and be blackened. If you install and setup pre-commit (done automatically by environment
setup), pre-commit will lint your code for you.

You can run the linting manually with make

make lint

CI

CI is run via Github Actions on all PRs and pushes to the main branch.

Releases are automatically released by Github Actions to Pypi.

1.3 Generated Module Documentation

This documentation is automatically generated from python docstrings.

6 Chapter 1. Dependencies

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

7

	Dependencies
	Quick Start
	Examples
	Installation
	Quick Usage

	Development
	Environment Setup
	How to Run Tests
	Test Requirements
	Code Linting
	CI

	Generated Module Documentation

	Indices and tables

